

- 1 Insight into the in-cloud formation of oxalate based on in situ measurement
- 2 by single particle mass spectrometry
- 3
- 4 Guohua Zhang¹, Qinhao Lin^{1,2}, Long Peng^{1,2}, Yuxiang Yang^{1,2}, Yuzhen Fu^{1,2}, Xinhui Bi^{1,*}, Mei
- 5 Li³, Duohong Chen⁴, Jianxin Chen⁵, Zhang Cai⁶, Xinming Wang¹, Ping'an Peng¹, Guoying
- 6 Sheng¹, Zhen Zhou³
- 7
- 8 ¹ State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of
- 9 Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry,
- 10 Chinese Academy of Sciences, Guangzhou 510640, PR China
- 11 ² University of Chinese Academy of Sciences, Beijing 100039, PR China
- 12 ³ Atmospheric Environment Institute of Safety and Pollution Control, Jinan University,
- 13 Guangzhou 510632, PR China
- 14 ⁴ State Environmental Protection Key Laboratory of Regional Air Quality Monitoring,
- 15 Guangdong Environmental Monitoring Center, Guangzhou 510308, PR China
- 16 ⁵ Shaoguan Environmental Monitoring Center, Shaoguan 512026, PR China
- 17 ⁶ John and Willie Leone Family Department of Energy and Mineral Engineering, The
- 18 Pennsylvania State University, University Park, PA 16802, USA
- 19
- 20 Correspondence should be addressed to Xinhui Bi (bixh@gig.ac.cn)

21 Highlights

- Single particle mixing state of oxalate in the cloud-free, residual, and interstitial particles
- was first reported.
- Direct observational evidence showed the enhanced formation of oxalate in the cloud
- 25 residual and interstitial particles.
- Chemically segregated formation of oxalate was observed depending on the oxidized
- 27 organics associated with aged biomass burning particles.
- Glyoxylate served as an important intermediate for the formation of oxalate in the
- 29 troposphere of southern China.

30

31 Abstract

32	While ground-based works suggest the significance of in-cloud production (or aqueous
33	formation) to oxalate, direct evidence is rare. With the in situ measurements performed at a
34	remote mountain site (1690 m a.s.l.) in southern China, we first reported the size-resolved
35	mixing state of oxalate in the cloud droplet residual (cloud RES), the cloud interstitial (cloud
36	INT), and ambient (cloud-free) particles by single particle mass spectrometry. The results
37	support the growing evidence that in-cloud aqueous reactions promote the formation of oxalate,
38	with ~15% of the cloud RES and cloud INT particles containing oxalate, in contrast to only ~5%
39	of the cloud-free particles. Furthermore, individual particle analysis provides unique insight
40	into the formation and evolution of oxalate during in-cloud processing. Oxalate was
41	predominantly (>70% in number) internally mixed with the aged biomass burning particles,
42	highlighting the impact of biomass burning on the formation of oxalate. In contrast, oxalate was
43	underrepresented in aged elemental carbon particles, although they represented the largest
44	fraction of the detected particles. It can be interpreted by the individual particle mixing state
45	that the aged biomass burning particles contained an abundance of organic components serving
46	as precursors for oxalate. Through the analysis of the relationship between oxalate and organic
47	acid ions (-45[HCO ₂] ⁻ , -59[CH ₃ CO ₂] ⁻ , -71[C ₂ H ₃ CO ₂] ⁻ , -73[C ₂ HO ₃] ⁻), the results show that in-
48	cloud aqueous reaction dramatically improved the conversion of organic acids to oxalate. The
49	abundance of glyoxylate associated with the aged biomass burning particles is the controlling
50	factor for the in-cloud production of oxalate. Since only limited information on oxalate is

- 51 available in the free troposphere, the results also provide an important reference for future
- 52 understanding of the abundance, evolution and climate impacts of oxalate.
- 53
- 54 Keywords: oxalate, individual particles, cloud droplet residues, mixing state, organic acids,
- 55 biomass burning

56 1 Introduction

57	In-cloud processing represents a large uncertainty in understanding the evolution and
58	impact of secondary organic aerosols (SOA) on both environment and climate (Ervens, 2015;
59	Ervens et al., 2011; Herrmann et al., 2015). Dicarboxylic acids significantly contribute to
60	SOA, aerosol acidity and hygroscopicity, and thus play an important role in atmospheric
61	chemistry and cloud condensation nuclei (CCN) (Ervens et al., 2011; Furukawa and
62	Takahashi, 2011; Sorooshian et al., 2013). Oxalic acid is globally the most abundant
63	dicarboxylic acid (Kawamura and Bikkina, 2016; Ho et al., 2010; Mochida et al., 2007),
64	accounting for as high as 5% of water soluble organic compounds downwind of the mainland
65	China (Feng et al., 2012; Kawamura and Bikkina, 2016). In addition, oxalate has great
66	impact on the solubility, photochemistry and bioavailability of transition metals in aerosols
67	(Ito and Shi, 2016; Johnson and Meskhidze, 2013).

68 Although there are primary sources, such as combustion of coal/biomass and biogenic 69 origins, oxalate is generally regarded as an oxidation product of malonate and glyoxylate, 70 precursors of which include glyoxal, methylglyoxal, glycolic acid, pyruvic acid, acetic acid 71 and so on (Carlton et al., 2006; Myriokefalitakis et al., 2011; Kawamura and Bikkina, 2016). 72 Large multifunctional compounds might also be important for the formation of oxalate 73 (Carlton et al., 2007). The formation pathways mainly include photochemical oxidation 74 followed by partitioning onto particulate phase and in-cloud aqueous formation (Yu et al., 75 2005; Guo et al., 2016; Sullivan et al., 2007). The in-cloud aqueous pathway is generally 76 proposed as the dominant pathway based on the similar pattern between both size

77	distribution and concentration of oxalate and sulfate (Yu et al., 2005; Huang et al., 2006;
78	Laongsri and Harrison, 2013). However, Zhou et al. (2015) argued that only 16% of oxalate
79	could be attributed to in-cloud production, despite of its robust correlation with sulfate.
80	Photochemical oxidation could account for $\sim 80\%$ of oxalate in air mass influenced by
81	biomass burning (Kundu et al., 2010). More direct evidences are needed to better evaluate
82	the formation and behavior of oxalate during in-cloud processing. Through aircraft
83	measurements, Sorooshian et al. (2006) revealed higher concentration of oxalate in cloud
84	droplet residual (cloud RES) particles, rather than in cloud-free atmospheric particles over
85	Ohio, USA. Similarly, elevated oxalate levels due to in-cloud processing were observed
86	above coastal USA (Crahan et al., 2004), and Gulf of Mexico (Sorooshian et al., 2007a;
87	Wonaschuetz et al., 2012; Sorooshian et al., 2007b). Recently, an aircraft measurement also
88	provided an evidence on the important role of in-cloud production of oxalate from the near
89	surface to the lower free troposphere (i.e., ~2 km) over inland China (Zhang et al., 2016).
90	All of these in-situ observations were based on bulk particles analysis, and thus might miss
91	some valuable information on the mixing state of oxalate, which is demonstrated to be
92	significant for evaluating the life time and environmental impact of oxalate (Sullivan et al.,
93	2007; Zhou et al., 2015). Information on oxalate in the atmosphere associated with cloud
94	formation is still rare, far from enough for thoroughly understanding its distribution, sources,
95	formation, evolution and environmental impact (Kawamura et al., 2013; Meng et al., 2014;
96	Meng et al., 2013).

97	Single particle mass spectrometry (SPMS) has been commonly applied to obtain mixing
98	state of individual oxalate-containing particles, which is essential for their atmospheric
99	behaviors and environment impacts (Sullivan et al., 2007). Based on SPMS, oxalate was
100	found to be extensively internally mixed with sulfate in the Arctic boundary layer (Hara et
101	al., 2002). Similarly, the relative contributions of in-cloud processing, heterogeneous
102	reactions and biomass burning to oxalate in Shanghai was investigated (Yang et al., 2009).
103	Sullivan et al. (2007) demonstrated the significant contribution of photochemical formation
104	to oxalate followed by partitioning onto the dust and sea-salt particles. Zhou et al. (2015)
105	proposed that oxalate was readily photo-degraded in a form of oxalate-Fe complex in Hong
106	Kong. However, such studies have not been conducted to investigate the in-cloud formation
107	of oxalate. Investigation on the single particle mixing state of cloud/fog RES and interstitial
108	(cloud INT) particles would provide unique insight into the formation and aging processes
109	of aerosol compositions (Zhang et al., 2012; Bi et al., 2016; Li et al., 2011b; Pratt et al.,
110	2010).

To better understand the in-cloud aqueous formation of oxalate, we investigated individual oxalate-containing particles at a high-altitude mountain site, representative of the free troposphere in southern China. Using a single particle aerosol mass spectrometer (SPAMS), the size-resolved mixing state of cloud-free, cloud RES and cloud INT oxalatecontaining particles were investigated. This paper reported data supporting the in-cloud production of oxalate, and also discussed the influence of mixing state on the in-cloud production.

118

119	2 Methods
-----	-----------

120 2.1 Cloud observation

121 Measurements of the cloud-free, cloud RES, and cloud INT particles were performed at 122 the Nanling national background site (24°41'56"N, 112°53'56"E, 1690 m a.s.l.) in southern 123 China during 16-26 January 2016. Air masses from the southwestern continental and marine 124 areas dominated over the sampling period, bringing relatively warmer and wetter air masses 125 that benefited cloud formation (Lin et al., 2017), based on the back-trajectory analysis 126 (HYSPLIT 4.9, available at http://ready.arl.noaa.gov/HYSPLIT.php) by Air Resources Lab 127 (Draxler and Rolph, 2012). The air masses from northern areas, associated with cool dry 128 airstreams, arrived during 18 and 23-24 January, resulted in a decrease in both temperature 129 and relative humidity. Cloud events were characterized by a sudden drop in visibility (to < 130 5 km) and a sharp increase in relative humidity (>95%) (Lin et al., 2017). In this study, three 131 long lasting (more than 12 hours) cloud events (Fig. 1), noted as cloud I, cloud II, and cloud III, were identified. The visibility were generally lower than 1 km during the cloud events. 132 133 Aerosols were introduced into the instruments through two parallel sampling inlets. The 134 first one was a ground-based counterflow virtual impactor (GCVI) (Model 1205, Brechtel 135 Mfg. Inc., USA), applied to collect the cloud RES particles with a diameter greater than 8 136 μm. The GCVI employed a compact wind tunnel upstream of the CVI inlet (Model 1204) 137 to accelerate cloud droplets in the CVI inlet tip (Shingler et al., 2012). Upstream of the CVI 138 sampling tip, only droplets exceeding a certain controllable size (or cut size) could pass

139	through the counterflow and enter the evaporation chamber (with an air flow temperature at
140	40 °C), where the droplets were dried, leaving the cloud RES particles that are capable of
141	acting as CCN. A 15 L/min sample flow was provided to the downstream instruments. The
142	enhancement factor for particles concentration collected by GCVI was 5.25, corresponding
143	to the designation of the CVI. The detailed characterization and validation of the CVI
144	sampling efficiency could be found elsewhere (Shingler et al., 2012). The flow rates of the
145	whole GCVI system were validated before measurements, and were also automatically
146	monitored throughout the operation. A test on the cloud-free air showed that the average
147	particles number concentration sampled by the GCVI was $\sim 1 \text{ cm}^{-3}$, in contrast to $\sim 2000 \text{ cm}^{-3}$
148	³ in ambient air. The testing demonstrates that the influence of background particles on the
149	collection of the cloud RES particles could be negligible, further validating the performance
150	of the GCVI. In the present study, the average number concentration of the cloud RES
151	particles sampled during the cloud events was ~250 cm ⁻³ (Lin et al., 2017). The other one
152	ambient (PM _{2.5}) sampling inlet was used to deliver cloud-free or cloud INT particles.

153

154 2.2 Instrumentation

A SPAMS (Hexin Analytical Instrument Co., Ltd., Guangzhou, China), an Aethalometer (AE-33, Magee Scientific Inc.), and a scanning mobility particle sizer (SMPS; MSP Cooperation) were conducted to characterize the physical and chemical properties of the sampled particles. During cloud I and cloud II, the instruments were connected downstream the GCVI. During cloud III, cloud RES and cloud INT particles were alternately

160	sampled with an interval of ~ 1 h. During the cloud-free periods, these instruments were
161	connected to the ambient inlet in order to measure the cloud-free particles. The presented
162	results focused on the chemical composition and mixing state of the oxalate-containing
163	particles detected by the SPAMS. Therefore, details for other instruments were not provided
164	herein.
165	
166	2.3 Detection and classification of oxalate-containing particles
167	The vacuum aerodynamic diameter (d_{va}) and mass spectral information for individual
168	particles could be obtained by the SPAMS (Li et al., 2011a). A brief description on
169	performance of the SPAMS can be found in the Supplement. Assuming Poisson distribution,
170	standard errors for the number fraction (Nf) of particles were estimated (Pratt et al., 2010),
171	since the particles were randomly detected by the SPAMS. Oxalate-containing particles are
172	identified as particles with ion peak at m/z -89 (Sullivan and Prather, 2007; Zauscher et al.,
173	2013), and their number-based mass spectra is shown in Fig. S1 in the Supplement.
174	Approximate 6000 particles were identified as oxalate-containing particles, accounting for
175	$8.1 \pm 0.1\%$ of the total detected particles in the size range of 100-1600 nm. They were
176	clustered by an adaptive resonance theory-based neural network algorithm (ART-2a), based
177	on the presence and intensity of ion peaks (Song et al., 1999). Eight types with distinct mass
178	spectral characteristics (Fig. S2) were obtained for further analysis. More detail information
179	on all the observed particle types could be found elsewhere (Lin et al., 2017).

180

181 **3 Results and Discussion**

182 **3.1 Direct observational evidence for in-cloud production of oxalate**

183 The Nfs of the oxalate-containing particles relative to all the cloud-free, cloud RES, and 184 cloud INT particles were $5.0 \pm 0.1\%$, $14.4 \pm 0.2\%$, and $13.4 \pm 1.1\%$, respectively (Table 1). 185 The Nfs of the oxalate-containing particles varied from near zero in the cloud-free particles to ~80% in the cloud RES or cloud INT particles (Figure 1). Consistently, the average 186 187 relative peak area (RPA) of oxalate in the cloud RES and cloud INT particles suppressed by 188 a factor of \sim 8 that in the cloud-free particles. Defined as fractional peak area of each m/z 189 relative to the sum of peak areas in a mass spectrum, RPA could represent the relative 190 amount of a species on a particle (Jeong et al., 2011; Healy et al., 2013). At ground level in 191 China, oxalate was found in $\sim 3\%$ of total particles in Shanghai (Yang et al., 2009) and the 192 PRD region (Cheng et al., 2017), respectively. Relatively higher fraction of oxalate-193 containing particles in this study might reflect the importance of atmospheric ageing during 194 long-range transport for the formation of oxalate at the high mountain site of southern China. 195 Analogous Nfs of the oxalate-containing particles in the cloud RES and cloud INT 196 particles suggest the similar formation mechanism of oxalate in cloud droplets and interstitial 197 particles, although Dall'Osto et al. (2009) indicated that difference might exist for secondary 198 compounds formation between fog droplets and INT particles. The Nfs of the oxalate-199 containing particles in the cloud-free, cloud RES, and cloud INT particles versus d_{va} are 200 displayed in Fig. 2. Oxalate-containing particles had higher Nfs in the smaller cloud-free 201 particles, indicative of primary emission or photochemical production followed by

202	condensation (Zauscher et al., 2013). On the contrary, the Nfs of the oxalate-containing
203	particles in the cloud RES and cloud INT particles increased with increasing d_{va} , showing a
204	distinctly different pattern. It indicates that in-cloud aqueous reaction grows the cloud RES
205	and cloud INT oxalate-containing particles with addition of secondary compositions
206	(Schroder et al., 2015). It is further supported by the unscaled number size distribution of
207	the cloud-free, cloud RES, and cloud INT oxalate-containing particles (Fig. S3), with d_{va}
208	peaking at around 0.5, 0.8, and 0.7 μ m, respectively.
209	It is further shown that the enhanced Nfs of the oxalate-containing particles was not
210	likely due to the influence of air mass. Firstly, the Nfs of the cloud-free oxalate-containing
211	particles were generally low (< 10%) over the sampling period (Fig. 1 and Fig. S4), reflecting
212	a background level of oxalate. Secondly, the Nfs and the RPAs of the cloud RES oxalate-
213	containing particles exclusively sharply increased when RH was larger than 95% (Fig. S4).
214	Significant enrichment of oxalate in the cloud RES particles demonstrates the importance of
215	in-cloud aqueous reactions in the formation of oxalate (Sorooshian et al., 2006). Overall,
216	these results provide direct evidences that the in-cloud aqueous processing is the dominant
217	mechanism for oxalate in this study. More details on the formation mechanism and the
218	dominant influence factors would be discussed in the following text.

219

220 **3.2 Predominant contribution of biomass/biofuel burning to oxalate**

Number fractions of the major ion peaks associated with the oxalate-containing particleswere compared to those with all the detected particles, as shown in Fig. 3. Detailed

223	information on the Nfs of all the detected ion peaks in the oxalate-containing particles could
224	be found in Fig. S1. Potassium, with intense peak (peak area > 1000) at m/z 39 Da, is
225	ubiquitously (~90%) associated with the oxalate-containing particles. It is attributed to
226	highly sensitive of potassium to the desorption laser in the SPAMS, although m/z 39 Da may
227	also be appointed to $39[C_3H_3]^+$ (Silva et al., 1999). Sulfate (-97[HSO4] ⁻ , 96%) and nitrate (-
228	62[HNO ₃] ⁻ , 88%) were the dominant secondary inorganic species associated with the
229	oxalate-containing particles. Other major ion peaks were ammonium (18[NH4]+, 47%),
230	organic nitrogen (-26[CN] ⁻ , 76%), and oxidized organics (i.e., m/z -45, -59, -71, and -73)
231	with the Nfs ranging from 17% to 57%. These oxidized organics were commonly found in
232	aged biomass burning particles, regarded as organic acids (OAs). Their RPAs increased with
233	increasing particle sizes (Fig. S5), indicative of secondary origins (Zauscher et al., 2013).
234	Furthermore, these OAs, most likely assigned to be formate at $m/z - 45[HCO_2]^-$, acetate at
235	m/z -59[CH ₃ CO ₂] ⁻ , methylglyoxal or acrylate at m/z -71[C ₂ H ₃ CO ₂] ⁻ , and glyoxylate at m/z
236	-73[C ₂ HO ₃] ⁻ (Zauscher et al., 2013), tracked each other temporally (Table S1), supporting
237	their similar formation mechanisms. Other OAs with minor fraction (~10%) were also
238	detected to be associated with the oxalate-containing particles, such as m/z -87, -103, and -
239	117 Da due to pyruvate, malonate, and succinate, respectively. OAs could be formed through
240	oxidation of volatile organic compounds in biomass burning plume (Zauscher et al., 2013).
241	Continuous evolution of primary organics to highly oxidized organics is widely observed for
242	biomass burning particles (Zhou et al., 2017; Cubison et al., 2011). The extensive presence
243	of potassium, OAs, and organic nitrogen in the oxalate-containing particles reflects the

244	substantial contribution of biomass burning to the observed oxalate (Zauscher et al., 2013;
245	Pratt et al., 2010). The oxalate-containing particles observed herein likely represented aged
246	biomass burning particles with enhanced aliphatic acids (Paglione et al., 2014). Significant
247	correlations between these OAs were observed in aged biomass burning particles (Zauscher
248	et al., 2013) and also cloud water samples (Sorooshian et al., 2013). Hence, it is expected
249	that the Nfs of these OAs were obviously larger in the oxalate-containing particles, rather
250	than those in the other detected particles (Fig. 3).
251	The contribution of biomass burning to the observed oxalate could also be reflected by
252	the overwhelming potassium-rich (K-rich) particles (Table 1 and Fig. S2), regarded as aged
253	biomass burning particles herein (Bi et al., 2011; Pratt et al., 2010; Zauscher et al., 2013).
254	Following emission, biomass burning particles become enriched in sulfate, nitrate, and OAs
255	as ageing processes (Reid et al., 2005). It can be seen in Fig. 4 that $75.1 \pm 1.5\%$ of oxalate
256	was associated with the K-rich particles, although they only accounted for $36.0 \pm 0.3\%$ of
257	all the detected particles (Lin et al., 2017). Only $4.0 \pm 0.4\%$ of oxalate was associated with
258	the aged elemental carbon (EC) particles although they were the dominant fraction (45.0 \pm
259	0.3%) of all the detected particles, reflecting an external mixing state. Enhancement of
260	oxalate in the K-rich particles supports the favorable formation of oxalate in aged biomass
261	burning particles. Such a high fraction (i.e., $75.1 \pm 1.5\%$) in the present study indicates a
262	substantial contribution from secondary processing of biomass burning particles, as
263	discussed above. The result is consistent with previous studies that observed abundance of
264	oxalate substantially influenced by aged biomass burning particles (Gao et al., 2003;

265	Deshmukh et al., 2016; Yang et al., 2014; Zhou et al., 2015). Primary emission from biomass
266	burning contributes only a minor fraction to the observed oxalate in the atmosphere in China
267	(Meng et al., 2013; Yang et al., 2009). Direct observation also supports the absence of
268	oxalate in primary biomass burning particles (Silva et al., 1999; Huo et al., 2016).
269	As shown in Fig. 4, $\sim 10\%$ of oxalate was associated with Fe-rich particles, second only
270	to the K-rich particles. Regarding that the Fe-rich particles only accounted for $2.5 \pm 0.4\%$ of
271	all the detected particles (Lin et al., 2017), it might reflect that the Fe facilitated the formation
272	of oxalate. Fenton reactions involving iron can produced more oxidants (e.g., •OH)
273	(Herrmann et al., 2015; Nguyen et al., 2013), which is an important factor for the formation
274	of oxalate (Ervens et al., 2014). Likewise, the highest fraction (> 30%) of oxalate was found
275	to be internally mixed with metal-containing (e.g., iron, zinc, copper) particles in the Pearl
276	River Delta region (Cheng et al., 2017). Oxalate was also found to be slightly enriched in
277	amine-containing particles, which is most probably attributed to the enhanced partition of
278	amine to wet aerosols (Zhang et al., 2012; Rehbein et al., 2011).
279	
280	3.3 Pathway for in-cloud formation of oxalate in aged biomass burning particles
281	As shown in Table 1, $>$ 70% of oxalate by number was associated with the aged biomass
282	burning particles. It is also noted that $\sim 10\%$ of the cloud-free K-rich particles contained
283	oxalate, while the fraction increased to $> 20\%$ in the cloud INT and cloud RES K-rich

- 284 particles. This is not likely due to the preferential activation of the K-rich particles, since the
- 285 Nfs of oxalate associated with the K-rich particles is similar (70-76%) for the cloud-free,

286	cloud RES, and cloud INT particles (Fig. S6). Therefore, the favorable formation of oxalate
287	in the K-rich particles is most probably attributed to the enhanced organic precursors, as
288	discussed in the following.
289	The major OAs were predominantly associated with the oxalate-containing particles
290	(Fig. 3) and also the K-rich particles (Table S2). Furthermore, significant correlations ($p <$
291	0.01) were found for the temporal profiles of the Nfs of the OAs and that of the oxalate-
292	containing particles, particularly, for the cloud RES particles (Table S1). The highest
293	correlation was found between the oxalate-containing particles and the glyoxylate-
294	containing particles in the Nf and the RPA (Fig. 5). The correlations were significantly
295	stronger for the cloud RES and cloud INT particles rather than for the cloud-free particles,
296	suggesting the in-cloud production from glyoxylate as an important pathway for oxalate. It
297	should further confirm the assignment of m/z -73 to glyoxylate, regarded as one of the
298	primary intermediates contributing to formation of oxalate (Carlton et al., 2006;
299	Myriokefalitakis et al., 2011). Miyazaki et al. (2009) suggested that secondary production of
300	oxalate probably in aqueous phase is important via the oxidation of both longer-chain diacids
301	and glyoxylate, and would be enhanced in biomass burning influenced particles. To our
302	knowledge, it is the first report on the direct link and the internally mixing state between
303	glyoxylate and oxalate during in-cloud processing with high time resolution. Additionally,
304	the linear regression slopes between glyoxylate and oxalate for the cloud RES and cloud INT
305	particles were also higher than that for the cloud-free particles (Fig. 5), which also supports
306	the more effective production of oxalate in cloud.

307	We further analyzed the relative fraction of the peaks areas of oxalate, glyoxylate, and
308	OAs in oxalate-containing particles during the cloud-free periods and cloud events (Fig. 6).
309	It can be seen that the dots distribute close to the OAs during cloud-free periods, whereas
310	they distribute towards oxalate during cloud events. This distribution indicates that the OAs
311	were the dominant composition relative to oxalate and glyoxylate in the cloud-free oxalate-
312	containing particles, whereas oxalate became more important in the cloud RES and cloud
313	INT oxalate-containing particles. The different pattern is attributable to the conversion of
314	the OAs to oxalate as a result of in-cloud aqueous reactions. It is also supported by the
315	variations of the Nfs of the major OAs in the cloud-free, cloud RES, and cloud INT particles,
316	respectively (Fig. S7). A substantial decrease (~50% on average) is found for the Nfs of the
317	OAs associated with the oxalate-containing particles, from the cloud-free particles to the
318	cloud RES and cloud INT particles. On the other hand, the Nfs of the OAs in all the detected
319	particles did not show an obvious decrease. The conversion of the OAs to oxalate during in-
320	cloud processing is consistent with the observation that oxalate increased as the droplets
321	evaporated, while acetate, glyoxylate, and malonate decreased (Sorooshian et al., 2007b).
322	Most of previous studies considered that glyoxylate is dominantly produced from
323	aqueous oxidation of glyoxal or glycolic acid, depending on volatile organic compounds
324	(Sorooshian et al., 2006; Sorooshian et al., 2007b; Ervens et al., 2004). Aqueous phase
325	reaction promotes the production of oxalate through increasing the partitioning of gases into
326	droplets (Sorooshian et al., 2007a). If this pathway dominated in this study, glyoxylate and
327	oxalate should be evenly distributed in all the particle types, which is inconsistent with our

328	observation that they were predominantly associated with the aged biomass burning particles
329	(Fig. 3). It indicates that a certain amount of glyoxylate should be directly produced in cloud
330	from the organics formed before the cloud events and associated with aged biomass burning
331	particles. Aqueous-phase processing of biomass-burning emissions was demonstrated to be
332	a substantial contributor to the SOA (Gilardoni et al., 2016). Existing models typically treat
333	cloud droplets as a well-mixed bulk aqueous phase (McNeill, 2015), and initialize the
334	particle composition as pure ammonium sulfate (Ervens et al., 2004; Sorooshian et al., 2006).
335	Our results suggest that a particle type based model with detailed chemical mixing state is
336	required for further understanding on the modification of particle properties by in-cloud
337	processing in the troposphere.

338

339 **3.4** Case study for the influence of air mass on the formation of oxalate

340 Cloud II represented a relatively more polluted condition, with PM2.5 around 200 ng m⁻ 341 ³, ~4 times those during cloud I and III. Air mass analysis showed that cloud II was strongly 342 influenced by northeastern air mass, contrasting to the southwestern air mass during cloud I 343 and III (Lin et al., 2017). Figure 7 compares the respective Nfs of the K-rich, oxalate-344 containing, and glyoxylate-containing particles during the three cloud events. The K-rich 345 particles were found to contribute ~25% of the cloud RES particles during cloud II, which was significantly lower than its contribution (~50%) during cloud I and III. Similarly, Nf of 346 347 the glyoxylate-containing particles during cloud II was significantly lower, which is also 348 similar for other oxidized organics (Table S3). Since oxalate was predominantly associated

349	with the aged biomass burning particles, Nf of the oxalate-containing particles shares a
350	similarly trend. This is because the in-cloud production of oxalate on the aged biomass
351	burning particles is dominantly controlled by the glyoxylate. It is also supported by higher
352	correlation between the Nfs of oxalate-containing and glyoxylate-containing particles,
353	relative to that between the Nfs of oxalate-containing particles and the aged biomass burning
354	particles (Table S1). The result suggests that aged biomass burning particles from
355	northeastern air mass contained less amount of oxidized organics for the formation of oxalate.
356	We also note that short cloud processing time should not be the reason for the lower Nf of
357	oxalate-containing particles during cloud II. As can be seen in Fig. 1, the Nf of oxalate-
358	containing particles increased to 20% within several hours during cloud I and III.

359

360 4 Conclusions

361 Individual particle mixing state of oxalate in the cloud-free, cloud RES and cloud INT 362 particles obtained at a remote mountain site allows for the investigation of formation and 363 evolution of oxalate. Our results show significant enhancement of oxalate-containing 364 particles in the cloud RES and cloud INT particles, rather than in the cloud-free particles, 365 providing first direct observational evidence for the in-cloud production of oxalate in the 366 troposphere in China, and strengthening the growing evidence that aqueous-phase chemistry 367 is the predominant formation mechanism for oxalate. The influence of biomass burning on 368 the formation of oxalate was also highlighted, with predominant fraction (> 70%) of oxalate 369 internally mixed with aged biomass burning particles. Formation of oxalate is highly

370	dependent on the abundance of organic acids strongly associated with the aged biomass
371	burning particles, with glyoxylate as an important intermediate. In-cloud chemically
372	segregated production of oxalate would lead to a substantial change of the biomass burning
373	particles after cloud evaporation, different from other particle types (e.g., aged EC particles
374	externally mixed with oxalate). It would have important implication for accurate modeling
375	the formation and influence of oxalate in the atmosphere.
376	
376 377	Acknowledgement
376 377 378	Acknowledgement This work was supported by the National Key Research and Development Program of
376 377 378 379	Acknowledgement This work was supported by the National Key Research and Development Program of China (2017YFC0210104), the National Nature Science Foundation of China (No.
376 377 378 379 380	Acknowledgement This work was supported by the National Key Research and Development Program of China (2017YFC0210104), the National Nature Science Foundation of China (No. 91544101), and the Foundation for Leading Talents of the Guangdong Province Government.

382 Geochemistry (SKLOG2016-A05).

383 References 384 Bi, X. H., Zhang, G. H., Li, L., Wang, X. M., Li, M., Sheng, G. Y., Fu, J. M., and Zhou, 385 Z.: Mixing state of biomass burning particles by single particle aerosol mass spectrometer in 386 the urban area of PRD, China, Atmos. Environ., 45, 3447-3453, 387 doi:10.1016/j.atmosenv.2011.03.034, 2011. 388 Bi, X. H., Lin, Q. H., Peng, L., Zhang, G. H., Wang, X. M., Brechtel, F. J., Chen, D. H., 389 Li, M., Peng, P. A., Sheng, G. Y., and Zhou, Z.: In situ detection of the chemistry of individual 390 fog droplet residues in the Pearl River Delta region, China, J. Geophys. Res.-Atmos., 121, 9105-391 9116, doi:10.1002/2016JD024886, 2016. 392 Carlton, A. G., Turpin, B. J., Lim, H. J., Altieri, K. E., and Seitzinger, S.: Link between 393 isoprene and secondary organic aerosol (SOA): Pyruvic acid oxidation yields low volatility 394 organic acids in clouds, Geophys. Res. Lett., 33, L06822, doi:10.1029/2005gl025374, 2006. 395 Carlton, A. G., Turpin, B. J., Altieri, K. E., Seitzinger, S., Reff, A., Lim, H. J., and Ervens, 396 B.: Atmospheric oxalic acid and SOA production from glyoxal: Results of aqueous 397 photooxidation experiments, Atmos. Environ., 41, 7588-7602, 398 doi:10.1016/j.atmosenv.2007.05.035, 2007. 399 Cheng, C., Li, M., Chan, C. K., Tong, H., Chen, C., Chen, D., Wu, D., Li, L., Wu, C., 400 Cheng, P., Gao, W., Huang, Z., Li, X., Zhang, Z., Fu, Z., Bi, Y., and Zhou, Z.: Mixing state of 401 oxalic acid containing particles in the rural area of Pearl River Delta, China: implications for 402 the formation mechanism of oxalic acid, Atmos. Chem. Phys., 17, 9519-9533, doi:10.5194/acp-403 17-9519-2017, 2017. 404 Crahan, K. K., Hegg, D., Covert, D. S., and Jonsson, H.: An exploration of aqueous oxalic 405 acid production in the coastal marine atmosphere, Atmos. Environ., 38, 3757-3764, 2004. 406 Cubison, M. J., Ortega, A. M., Hayes, P. L., Farmer, D. K., Day, D., Lechner, M. J., Brune, 407 W. H., Apel, E., Diskin, G. S., Fisher, J. A., Fuelberg, H. E., Hecobian, A., Knapp, D. J., 408 Mikoviny, T., Riemer, D., Sachse, G. W., Sessions, W., Weber, R. J., Weinheimer, A. J.,

409 Wisthaler, A., and Jimenez, J. L.: Effects of aging on organic aerosol from open biomass

- 410 burning smoke in aircraft and laboratory studies, Atmos. Chem. Phys., 11, 12049-12064,
- 411 doi:10.5194/acp-11-12049-2011, 2011.
- 412 Dall'Osto, M., Harrison, R. M., Coe, H., and Williams, P.: Real-time secondary aerosol
 413 formation during a fog event in London, Atmos. Chem. Phys., 9, 2459-2469, 2009.
- 414 Deshmukh, D. K., Kawamura, K., and Deb, M. K.: Dicarboxylic acids, ω-oxocarboxylic
 415 acids, α-dicarbonyls, WSOC, OC, EC, and inorganic ions in wintertime size-segregated
 416 aerosols from central India: Sources and formation processes, Chemosphere, 161, 27-42,
 417 doi:10.1016/j.chemosphere.2016.06.107, 2016.
- 418 Draxler, R. R., and Rolph, G. D.: HYSPLIT (HYbrid Single-Particle Lagrangian via 419 Model access NOAA ARL READY Integrated Trajectory) Website 420 (http://ready.arl.noaa.gov/HYSPLIT.php), NOAA Air Resources Laboratory, MD, Silver 421 Spring, 2012.
- Ervens, B., Feingold, G., Frost, G. J., and Kreidenweis, S. M.: A modeling study of
 aqueous production of dicarboxylic acids: 1. Chemical pathways and speciated organic mass
 production, J. Geophys. Res.-Atmos., 109, 1265-1277, doi:10.1029/2003jd004387, 2004.
- 425 Ervens, B., Turpin, B. J., and Weber, R. J.: Secondary organic aerosol formation in cloud
- 426 droplets and aqueous particles (aqSOA): a review of laboratory, field and model studies, Atmos.
- 427 Chem. Phys., 11, 11069-11102, doi:10.5194/acp-11-11069-2011, 2011.
- 428 Ervens, B., Sorooshian, A., Lim, Y. B., and Turpin, B. J.: Key parameters controlling OH-
- 429 initiated formation of secondary organic aerosol in the aqueous phase (aqSOA), J. Geophys.
- 430 Res.-Atmos., 119, 3997-4016, doi:10.1002/2013JD021021, 2014.
- 431 Ervens, B.: Modeling the Processing of Aerosol and Trace Gases in Clouds and Fogs,
- 432 Chem. Rev., 115, 4157-4198, doi:10.1021/cr5005887, 2015.
- 433 Feng, J. L., Guo, Z. G., Zhang, T. R., Yao, X. H., Chan, C. K., and Fang, M.: Source and
- 434 formation of secondary particulate matter in PM_{2.5} in Asian continental outflow, J. Geophys.
- 435 Res.-Atmos., 117, 812-819, doi:10.1029/2011jd016400, 2012.

- Furukawa, T., and Takahashi, Y.: Oxalate metal complexes in aerosol particles:
 implications for the hygroscopicity of oxalate-containing particles, Atmos. Chem. Phys., 11,
 4289-4301, doi:10.5194/acp-11-4289-2011, 2011.
 Gao, S., Hegg, D. A., Hobbs, P. V., Kirchstetter, T. W., Magi, B. I., and Sadilek, M.:
 Water-soluble organic components in aerosols associated with savanna fires in southern Africa:
 Identification, evolution, and distribution, J. Geophys. Res.-Atmos., 108, 471-475, 2003.
- 442 Gilardoni, S., Massoli, P., Paglione, M., Giulianelli, L., Carbone, C., Rinaldi, M., Decesari,
- 443 S., Sandrini, S., Costabile, F., Gobbi, G. P., Pietrogrande, M. C., Visentin, M., Scotto, F., Fuzzi,
- 444 S., and Facchini, M. C.: Direct observation of aqueous secondary organic aerosol from biomass-
- burning emissions, Proc. Natl. Acad. Sci. USA, 113, 10013-10018, 2016.
- Guo, T. F., Li, K., Zhu, Y. J., Gao, H. W., and Yao, X. H.: Concentration and size
 distribution of particulate oxalate in marine and coastal atmospheres Implication for the
 increased importance of oxalate in nanometer atmospheric particles, Atmos. Environ., 142, 1931, 2016.
- Hara, K., Osada, K., Matsunaga, K., Sakai, T., Iwasaka, Y., and Furuya, K.: Concentration
 trends and mixing states of particulate oxalate in Arctic boundary layer in winter/spring, J.
 Geophys. Res.-Atmos., 107, AAC 12-11 AAC 12-14, 2002.
- Healy, R. M., Sciare, J., Poulain, L., Crippa, M., Wiedensohler, A., Prevot, A. S. H.,
 Baltensperger, U., Sarda-Esteve, R., McGuire, M. L., Jeong, C. H., McGillicuddy, E., O'Connor,
 I. P., Sodeau, J. R., Evans, G. J., and Wenger, J. C.: Quantitative determination of carbonaceous
 particle mixing state in Paris using single-particle mass spectrometer and aerosol mass
 spectrometer measurements, Atmos. Chem. Phys., 13, 9479-9496, doi:10.5194/acp-13-94792013, 2013.
- Herrmann, H., Schaefer, T., Tilgner, A., Styler, S. A., Weller, C., Teich, M., and Otto, T.:
 Tropospheric Aqueous-Phase Chemistry: Kinetics, Mechanisms, and Its Coupling to a
 Changing Gas Phase, Chem. Rev., 115, 4259-4334, doi:10.1021/cr500447k, 2015.
- Ho, K. F., Lee, S. C., Ho, S. S. H., Kawamura, K., Tachibana, E., Cheng, Y., and Zhu, T.:
- 463 Dicarboxylic acids, ketocarboxylic acids, alpha-dicarbonyls, fatty acids, and benzoic acid in

- 464 urban aerosols collected during the 2006 Campaign of Air Quality Research in Beijing
- 465 (CAREBeijing-2006), J. Geophys. Res.-Atmos., 115, D19312, 2010.
- Huang, X. F., Yu, J. Z., He, L. Y., and Yuan, Z. B.: Water-soluble organic carbon and
 oxalate in aerosols at a coastal urban site in China: Size distribution characteristics, sources,
 and formation mechanisms, J. Geophys. Res.-Atmos., 111, D22212,
 doi:10.1029/2006jd007408, 2006.
- 470 Huo, J., Lu, X., Wang, X., Chen, H., Ye, X., Gao, S., Gross, D. S., Chen, J., and Yang, X.:
- 471 Online single particle analysis of chemical composition and mixing state of crop straw burning
- 472 particles: from laboratory study to field measurement, Frontiers of Environmental Science &
- 473 Engineering, 10, 244-252, doi:10.1007/s11783-015-0768-z, 2016.
- 474 Ito, A., and Shi, Z.: Delivery of anthropogenic bioavailable iron from mineral dust and
 475 combustion aerosols to the ocean, Atmos. Chem. Phys., 16, 85-99, doi:10.5194/acp-16-85-2016,
 476 2016.
- 477 Jeong, C. H., McGuire, M. L., Godri, K. J., Slowik, J. G., Rehbein, P. J. G., and Evans, G.
 478 J.: Quantification of aerosol chemical composition using continuous single particle
- 479 measurements, Atmos. Chem. Phys., 11, 7027-7044, doi:10.5194/acp-11-7027-2011, 2011.
- Johnson, M. S., and Meskhidze, N.: Atmospheric dissolved iron deposition to the global
 oceans: effects of oxalate-promoted Fe dissolution, photochemical redox cycling, and dust
 mineralogy, Geoscientific Model Development, 6, 1137-1155, doi:10.5194/gmd-6-1137-2013,
 2013.
- Kawamura, K., Tachibana, E., Okuzawa, K., Aggarwal, S. G., Kanaya, Y., and Wang, Z.
 F.: High abundances of water-soluble dicarboxylic acids, ketocarboxylic acids and alphadicarbonyls in the mountaintop aerosols over the North China Plain during wheat burning
 season, Atmos. Chem. Phys., 13, 8285-8302, 2013.
- Kawamura, K., and Bikkina, S.: A review of dicarboxylic acids and related compounds in
 atmospheric aerosols: Molecular distributions, sources and transformation, Atmos. Res., 170,
 140-160, 2016.

491	Kundu, S., Kawamura, K., Andreae, T. W., Hoffer, A., and Andreae, M. O.: Molecular
492	distributions of dicarboxylic acids, ketocarboxylic acids and alpha-dicarbonyls in biomass
493	burning aerosols: implications for photochemical production and degradation in smoke layers,
494	Atmos. Chem. Phys., 10, 2209-2225, 2010.
495	Laongsri, B., and Harrison, R. M.: Atmospheric behaviour of particulate oxalate at UK
496	urban background and rural sites, Atmos. Environ., 71, 319-326, 2013.
497	Li, L., Huang, Z. X., Dong, J. G., Li, M., Gao, W., Nian, H. Q., Fu, Z., Zhang, G. H., Bi,
498	X. H., Cheng, P., and Zhou, Z.: Real time bipolar time-of-flight mass spectrometer for analyzing
499	single aerosol particles, Intl. J. Mass. Spectrom., 303, 118-124, doi:10.1016/j.ijms.2011.01.017,
500	2011a.
501	Li, W. J., Li, P. R., Sun, G. D., Zhou, S. Z., Yuan, Q., and Wang, W. X.: Cloud residues
502	and interstitial aerosols from non-precipitating clouds over an industrial and urban area in
503	northern China, Atmos. Environ., 45, 2488-2495, doi:10.1016/j.atmosenv.2011.02.044, 2011b.
504	Lin, Q., Zhang, G., Peng, L., Bi, X., Wang, X., Brechtel, F. J., Li, M., Chen, D., Peng, P.,
505	Sheng, G., and Zhou, Z.: In situ chemical composition measurement of individual cloud residue
506	particles at a mountain site, southern China, Atmos. Chem. Phys., 17, 8473-8488,
507	doi:10.5194/acp-17-8473-2017, 2017.
508	McNeill, V. F.: Aqueous Organic Chemistry in the Atmosphere: Sources and Chemical
509	Processing of Organic Aerosols, Environ. Sci. Technol., 49, 1237-1244,
510	doi:10.1021/es5043707, 2015.
511	Meng, J. J., Wang, G. H., Li, J. J., Cheng, C. L., and Cao, J. J.: Atmospheric oxalic acid
512	and related secondary organic aerosols in Qinghai Lake, a continental background site in Tibet
513	Plateau, Atmos. Environ., 79, 582-589, 2013.
514	Meng, J. J., Wang, G. H., Li, J. J., Cheng, C. L., Ren, Y. Q., Huang, Y., Cheng, Y. T., Cao,
515	J. J., and Zhang, T.: Seasonal characteristics of oxalic acid and related SOA in the free
516	troposphere of Mt. Hua, central China: Implications for sources and formation mechanisms, Sci.
517	Total. Environ., 493, 1088-1097, 2014.

518	Miyazaki, Y., Aggarwal, S. G., Singh, K., Gupta, P. K., and Kawamura, K.: Dicarboxylic
519	acids and water-soluble organic carbon in aerosols in New Delhi, India, in winter:
520	Characteristics and formation processes, J. Geophys. ResAtmos., 114, D19206, 2009.
521	Mochida, M., Umemoto, N., Kawamura, K., Lim, H. J., and Turpin, B. J.: Bimodal size
522	distributions of various organic acids and fatty acids in the marine atmosphere: Influence of
523	anthropogenic aerosols, Asian dusts, and sea spray off the coast of East Asia, J. Geophys. Res
524	Atmos., 112, 229-238, 2007.
525	Myriokefalitakis, S., Tsigaridis, K., Mihalopoulos, N., Sciare, J., Nenes, A., Kawamura,
526	K., Segers, A., and Kanakidou, M.: In-cloud oxalate formation in the global troposphere: a 3-
527	D modeling study, Atmos. Chem. Phys., 11, 5761-5782, doi:10.5194/acp-11-5761-2011, 2011.
528	Nguyen, T. B., Coggon, M. M., Flagan, R. C., and Seinfeld, J. H.: Reactive Uptake and
529	Photo-Fenton Oxidation of Glycolaldehyde in Aerosol Liquid Water, Environ. Sci. Technol.,
530	47, 4307-4316, doi:10.1021/es400538j, 2013.
531	Paglione, M., Saarikoski, S., Carbone, S., Hillamo, R., Facchini, M. C., Finessi, E.,
532	Giulianelli, L., Carbone, C., Fuzzi, S., Moretti, F., Tagliavini, E., Swietlicki, E., Stenstrom, K.
533	E., Prevot, A. S. H., Massoli, P., Canaragatna, M., Worsnop, D., and Decesari, S.: Primary and
534	secondary biomass burning aerosols determined by proton nuclear magnetic resonance (H-1-
535	NMR) spectroscopy during the 2008 EUCAARI campaign in the Po Valley (Italy), Atmos.
536	Chem. Phys., 14, 5089-5110, doi:10.5194/acp-14-5089-2014, 2014.
537	Pratt, K. A., Heymsfield, A. J., Twohy, C. H., Murphy, S. M., DeMott, P. J., Hudson, J.
538	G., Subramanian, R., Wang, Z. E., Seinfeld, J. H., and Prather, K. A.: In Situ Chemical
539	Characterization of Aged Biomass-Burning Aerosols Impacting Cold Wave Clouds, J. Atmos.
540	Sci., 67, 2451-2468, doi:10.1175/2010JAS3330.1, 2010.
541	Rehbein, P. J. G., Jeong, C. H., McGuire, M. L., Yao, X. H., Corbin, J. C., and Evans, G.
542	J.: Cloud and Fog Processing Enhanced Gas-to-Particle Partitioning of Trimethylamine,
543	Environ. Sci. Technol., 45, 4346-4352, doi:10.1021/es1042113, 2011.

544	Reid, J. S., Koppmann, R., Eck, T. F., and Eleuterio, D. P.: A review of biomass burning
545	emissions part II: intensive physical properties of biomass burning particles, Atmos. Chem.
546	Phys., 5, 799-825, 2005.
547	Schroder, J. C., Hanna, S. J., Modini, R. L., Corrigan, A. L., Kreidenwies, S. M.,
548	Macdonald, A. M., Noone, K. J., Russell, L. M., Leaitch, W. R., and Bertram, A. K.: Size-
549	resolved observations of refractory black carbon particles in cloud droplets at a marine
550	boundary layer site, Atmos. Chem. Phys., 15, 1367-1383, doi:10.5194/acp-15-1367-2015, 2015.
551	Shingler, T., Dey, S., Sorooshian, A., Brechtel, F. J., Wang, Z., Metcalf, A., Coggon, M.,
552	Mulmenstadt, J., Russell, L. M., Jonsson, H. H., and Seinfeld, J. H.: Characterisation and
553	airborne deployment of a new counterflow virtual impactor inlet, Atmos. Meas. Tech., 5, 1259-
554	1269, doi:10.5194/amt-5-1259-2012, 2012.
555	Silva, P. J., Liu, D. Y., Noble, C. A., and Prather, K. A.: Size and chemical characterization
556	of individual particles resulting from biomass burning of local Southern California species,
557	Environ. Sci. Technol., 33, 3068-3076, 1999.
558	Song, X. H., Hopke, P. K., Fergenson, D. P., and Prather, K. A.: Classification of single
559	particles analyzed by ATOFMS using an artificial neural network, ART-2A, Anal. Chem., 71,
560	860-865, 1999.
561	Sorooshian, A., Varutbangkul, V., Brechtel, F. J., Ervens, B., Feingold, G., Bahreini, R.,
562	Murphy, S. M., Holloway, J. S., Atlas, E. L., Buzorius, G., Jonsson, H., Flagan, R. C., and
563	Seinfeld, J. H.: Oxalic acid in clear and cloudy atmospheres: Analysis of data from International
564	Consortium for Atmospheric Research on Transport and Transformation 2004, J. Geophys.
565	ResAtmos., 111, 23-45, doi:10.1029/2005jd006880, 2006.
566	Sorooshian, A., Lu, M. L., Brechtel, F. J., Jonsson, H., Feingold, G., Flagan, R. C., and
567	Seinfeld, J. H.: On the source of organic acid aerosol layers above clouds, Environ. Sci.
568	Technol., 41, 4647-4654, 2007a.
569	Sorooshian, A., Ng, N. L., Chan, A. W. H., Feingold, G., Flagan, R. C., and Seinfeld, J.
570	H.: Particulate organic acids and overall water-soluble aerosol composition measurements from

571 the 2006 Gulf of Mexico Atmospheric Composition and Climate Study (GoMACCS), J. 572 Geophys. Res.-Atmos., 112, 125-138, doi:10.1029/2007jd008537, 2007b. 573 Sorooshian, A., Wang, Z., Coggon, M. M., Jonsson, H. H., and Ervens, B.: Observations 574 of Sharp Oxalate Reductions in Stratocumulus Clouds at Variable Altitudes: Organic Acid and 575 Metal Measurements During the 2011 E-PEACE Campaign, Environ. Sci. Technol., 47, 7747-576 7756, doi:10.1021/es4012383, 2013. 577 Sullivan, R. C., Guazzotti, S. A., Sodeman, D. A., and Prather, K. A.: Direct observations 578 of the atmospheric processing of Asian mineral dust, Atmos. Chem. Phys., 7, 1213-1236, 579 doi:10.5194/acp-7-1213-2007, 2007. 580 Sullivan, R. C., and Prather, K. A.: Investigations of the diurnal cycle and mixing state of 581 oxalic acid in individual particles in Asian aerosol outflow, Environ. Sci. Technol., 41, 8062-582 8069, 2007. 583 Wonaschuetz, A., Sorooshian, A., Ervens, B., Chuang, P. Y., Feingold, G., Murphy, S. M., 584 de Gouw, J., Warneke, C., and Jonsson, H. H.: Aerosol and gas re-distribution by shallow 585 cumulus clouds: An investigation using airborne measurements, J. Geophys. Res.-Atmos., 117, 586 202, doi:10.1029/2012jd018089, 2012. 587 Yang, F., Chen, H., Wang, X. N., Yang, X., Du, J. F., and Chen, J. M.: Single particle 588 mass spectrometry of oxalic acid in ambient aerosols in Shanghai: Mixing state and formation 589 mechanism, Atmos. Environ., 43, 3876-3882, 2009. 590 Yang, F., Gu, Z. P., Feng, J. L., Liu, X. H., and Yao, X. H.: Biogenic and anthropogenic 591 sources of oxalate in PM2.5 in a mega city, Shanghai, Atmos. Res., 138, 356-363, 592 doi:10.1016/j.atmosres.2013.12.006, 2014. 593 Yu, J. Z., Huang, X. F., Xu, J. H., and Hu, M.: When aerosol sulfate goes up, so does 594 oxalate: Implication for the formation mechanisms of oxalate, Environ. Sci. Technol., 39, 128-595 133, doi:10.1021/Es049559f, 2005. 596 Zauscher, M. D., Wang, Y., Moore, M. J. K., Gaston, C. J., and Prather, K. A.: Air Quality 597 Impact and Physicochemical Aging of Biomass Burning Aerosols during the 2007 San Diego 598 Wildfires, Environ. Sci. Technol., 47, 7633-7643, doi:10.1021/es4004137, 2013.

- 599 Zhang, G. H., Bi, X. H., Chan, L. Y., Li, L., Wang, X. M., Feng, J. L., Sheng, G. Y., Fu,
- 600 J. M., Li, M., and Zhou, Z.: Enhanced trimethylamine-containing particles during fog events
- 601 detected by single particle aerosol mass spectrometry in urban Guangzhou, China, Atmos.
- 602 Environ., 55, 121-126, doi:10.1016/j.atmosenv.2012.03.038, 2012.
- 603 Zhang, Y. L., Kawamura, K., Fu, P. Q., Boreddy, S. K. R., Watanabe, T., Hatakeyama, S.,
- 604 Takami, A., and Wang, W.: Aircraft observations of water-soluble dicarboxylic acids in the
- 605 aerosols over China, Atmos. Chem. Phys., 16, 6407-6419, doi:10.5194/acp-16-6407-2016,
- 606 2016.
- 607 Zhou, S., Collier, S., Jaffe, D. A., Briggs, N. L., Hee, J., Sedlacek Iii, A. J., Kleinman, L.,
- 608 Onasch, T. B., and Zhang, Q.: Regional influence of wildfires on aerosol chemistry in the
- 609 western US and insights into atmospheric aging of biomass burning organic aerosol, Atmos.
- 610 Chem. Phys., 17, 2477-2493, doi:10.5194/acp-17-2477-2017, 2017.
- Zhou, Y., Huang, X. H., Bian, Q., Griffith, S. M., Louie, P. K. K., and Yu, J. Z.: Sources
 and atmospheric processes impacting oxalate at a suburban coastal site in Hong Kong: Insights
 inferred from 1 year hourly measurements, J. Geophys. Res.-Atmos., 120, 9772-9788,
 doi:10.1002/2015jd023531, 2015.
- 615

616 Tables

617 Table 1. The number and number fraction of oxalate-containing particles in

618 the all the detected cloud-free, RES, and INT particles.

	Cloud-free	Cloud RES	Cloud INT
Num. of all the detected particles	48835	23616	1063
Num. of oxalate-containing particles	2442	3410	142
Nf. of oxalate-containing particles	$5.0\pm0.1\%$	$14.4\pm0.2\%$	$13.4 \pm 1.1\%$
Nf. of oxalate-containing particles classified	76.3 ± 1.8%	$70.0\pm1.4\%$	$71.8\pm7.1\%$
as aged biomass burning particles			

619

620 Figure caption

621	Fig. 1. (a) Temporal variation (in one-hour resolution) of Nfs of the oxalate-
622	containing particles, and box-and-whisker plots of (b) the Nf of oxalate-containing
623	particles, and (c) the relative peak area (RPA) of oxalate, separated for the cloud-free,
624	cloud RES, and cloud INT particles. In a box and whisker plot, the lower, median and
625	upper line of the box denote the 25, 50, and 75 percentiles, respectively; the lower and
626	upper edges of the whisker denote the 10 and 90 percentiles, respectively. Red triangles
627	refer to the arithmetical mean values of the Nfs and RPAs shown in (b) and (c).
628	Fig. 2. Size dependent Nfs of oxalate-containing particles relative to all the
629	detected cloud-free, cloud RES, and cloud INT particles, respectively.
630	Fig. 3. Number fractions of the major ion peaks in oxalate-containing and all the
631	detected particles, respectively.
632	Fig. 4. Number fractions of the single particle types for oxalate-containing and all
633	the detected particles, respectively.
634	Fig. 5. Correlation analysis between (a) the Nfs and (b) The RPAs of the oxalate-
635	containing and glyoxylate-containing particles, separated for the cloud-free, cloud RES,
636	and cloud INT particles, respectively.
637	Fig. 6. The relative distributions of the peak areas of oxalate, glyoxylate, and the
638	OAs for (a) the individual cloud-free and (b) the cloud RES and cloud INT oxalate-
639	containing particles. The peak areas of the OAs were summed from those of the

640 individual OAs. The coloration indicates the RPA of oxalate.

- Fig. 7. Box and whisker plots of the variations of Nfs for the K-rich, oxalate-
- 642 containing, and glyoxylate-containing particles during the cloud events, respectively.

645

647

Fig. 4.

652 Fig. 5.

651

(a) cloud-free oxalate-containing particles

653

654 Fig. 6.

655

